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On the isometric conjecture of Banach
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Let V be a Banach space all of whose subspaces of a fixed dimension n are isometric,
with 1 < n < dim.V / . In 1932, S Banach asked if under this hypothesis V is
necessarily a Hilbert space. In 1967, M Gromov answered it positively for even n .
We give a positive answer for real V and odd n of the form n D 4k C 1 , with
the possible exception of n D 133 . Our proof relies on a new characterization of
ellipsoids in R

n for n � 5 , as the only symmetric convex bodies all of whose linear
hyperplane sections are linearly equivalent affine bodies of revolution.

52A21; 46B04

1 Introduction

S Banach asked in 1932 the following question:

Let V be a Banach space , real or complex , finite- or infinite-dimensional , all of whose

n–dimensional subspaces , for some fixed integer n, 2  n< dim.V /, are isometrically

isomorphic to each other. Is it true that V is a Hilbert space? (See [3, page 244], or
page 152 of the English translation, remarks on Chapter XII, property (5).)

It is important to note that Banach’s question is a codimension 1 problem: since
every Banach space all of whose subspaces of a fixed dimension n � 2 are Hilbert
spaces is itself a Hilbert space,1 an affirmative answer for n in codimension 1 implies
immediately an affirmative answer for n in all codimensions.

The conjecture2 was proved first for n D 2 and real V in 1935 by Auerbach, Mazur and
Ulam [2] and for all n�2 and infinite-dimensional real V in 1959 by A Dvoretzky [6; 7].
1This easily follows from the elementary characterization of a norm coming from an inner product via the
“parallelogram law”.
2Following a long-established tradition starting with [9], we rename Banach’s question a “conjecture” in
this article, although Banach himself, as far as we know, did not conjecture a positive answer.

Published: 3 September 2021 DOI: 10.2140/gt.2021.25.2621

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=52A21,%2046B04
http://dx.doi.org/10.2140/gt.2021.25.2621


2622 Gil Bor, Luis Hernández Lamoneda, Valentín Jiménez-Desantiago and Luis Montejano

In 1967, M Gromov [9] proved the conjecture for even n and all V , real or complex,
for odd n and real V with dim.V / � n C 2, and for odd n and complex V with
dim.V /� 2n (which also proves the conjecture for all infinite-dimensional V , real or
complex, as noted above). It is probably worth noticing that V Milman [16] extended
Dvoretzky’s theorem to the complex case, in particular reproving Banach’s conjecture
for infinite-dimensional complex V . A recent and very thorough account of the history
of this conjecture is found in Soltan [22, Section 6, page 388]. We also recommend
Pełciński [21] and the notes on Chapter 9 in Martini, Montejano and Oliveros [15,
page 206].

Here we settle Banach’s conjecture for real V and “one half” of the odd n, by showing
that:

Main theorem A real Banach space all of whose n–dimensional subspaces are isomet-

rically isomorphic to each other for some fixed odd integer n of the form n D 4kC1 � 5

with n ¤ 133 is a Hilbert space.

Remark 1.1 The reason for the strange exception n ¤ 133 will become clearer during
the proof (133 is the dimension of the exceptional Lie group E7 ).

Consider the closed unit ball B D fkxk  1g ⇢ V . It is a symmetric convex body. Since
a finite-dimensional Banach space is a Hilbert space if and only if B is an ellipsoid,
Banach’s question can be reformulated as:

Let B ⇢ R
N

be a symmetric convex body all of whose sections by n–dimensional

linear subspaces for some fixed integer n with 1< n<N are linearly equivalent. Is it

true that B is an ellipsoid?

Thus, in order to prove the main theorem, in the sequel we show the following:

Theorem 1.2 Let B ⇢R
nC1

with nD4kC1�5 and n¤133 be a convex symmetric

body all of whose sections by n–dimensional subspaces are linearly equivalent. Then

B is an ellipsoid.

In fact, using Theorem 1 of Montejano [17], one can drop the symmetry assumption
on B in the above reformulation, obtaining:

Main convex geometry theorem Let B ⇢ R
nC1

with n D 4k C 1 � 5 and n ¤ 133

be a convex body all of whose sections by n–dimensional affine subspaces through a

fixed interior point are affinely equivalent. Then B is an ellipsoid.
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1.1 Sketch of the proof of the main theorem

Our proof of Theorem 1.2 combines two main ingredients: convex geometry and
algebraic topology. To describe these, we need to recall first some standard definitions.

A symmetric convex body is a compact convex subset of a finite-dimensional real
vector space with a nonempty interior, invariant under x 7! �x . A hyperplane is a
codimension 1 linear subspace. An affine hyperplane is the translation of a hyperplane
by some vector. A hyperplane section of a subset in a vector space is its intersection
with a hyperplane. Two sets, each a subset of a vector space, are linearly (respectively,
affinely) equivalent if they can be mapped to each other by a linear (respectively, affine)
isomorphism between their ambient vector spaces. An ellipsoid is a subset of a vector
space which is affinely equivalent to the unit ball in euclidean space.

A symmetric convex body K ⇢ R
n is a symmetric body of revolution if it admits

an axis of revolution, ie a 1–dimensional linear subspace L such that each section
of K by an affine hyperplane A orthogonal to L is an .n�1/–dimensional closed
euclidean ball in A, centered at A \ L (possibly empty or just a point). If L is an
axis of revolution of K then L? is the associated hyperplane of revolution. An affine
symmetric body of revolution is a convex body linearly equivalent to a symmetric
body of revolution. The images, under the linear equivalence, of an axis of revolution
and its associated hyperplane of revolution of the body of revolution are an axis of
revolution and associated hyperplane of revolution of the affine body of revolution
(not necessarily perpendicular anymore). Clearly, an ellipsoid centered at the origin is
an affine symmetric body of revolution and any hyperplane serves as a hyperplane of
revolution.

With these definitions understood, the convex geometry result that we use in the proof
of Theorem 1.2 is the following characterization of ellipsoids:

Theorem 1.3 A symmetric convex body B ⇢ R
nC1

with n � 4, all of whose hyper-

plane sections are linearly equivalent affine bodies of revolution , is an ellipsoid.

The main ingredient in the proof of this theorem is the following result, possibly of
independent interest:

Theorem 1.4 Let B ⇢ R
nC1

with n � 4 be a symmetric convex body, all of whose

hyperplane sections are affine bodies of revolution. Then at least one of the sections is

an ellipsoid.
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Note that in Theorem 1.4, unlike Theorem 1.3, we do not assume that all hyperplane
sections of B are necessarily linearly equivalent to each other. If we add this assumption
then it follows from Theorem 1.4 that all hyperplane sections of B are ellipsoids. It
then follows easily that B itself is an ellipsoid: all hyperplane sections are Hilbert
spaces and therefore V itself is also one.3

Theorem 1.4 is proved in Section 2. The rest of the article consists of topological
methods to show that, under the hypotheses of Theorem 1.2, all hyperplane sections
of B are necessarily affine symmetric bodies of revolution. The link to topology is via
a beautiful idea that traces back to the work of Gromov [9]. It consists of the following
key observation:

Lemma 1.5 Let B ⇢ R
nC1

be a symmetric convex body all of whose hyperplane

sections are linearly equivalent to some fixed symmetric convex body K ⇢ R
n

. Let

GK WD fg 2 GLn.R/ j g.K/D Kg be the group of linear symmetries of K. Then the

structure group of Sn
can be reduced to GK .

See Section 3.1 below for a proof of this lemma, as well as a brief reminder about
structure groups of differentiable manifolds and their reductions. Lemma 1.5 can be
interpreted through the notion of a field of convex bodies tangent to Sn . See, for
example, Mani [14] and Montejano [17].

Following Lemma 1.5, our task is to understand the possible reductions of the structure
group of Sn (a classical problem in topology). The results we need are contained
in the next purely topological theorem, which, when applied to Lemma 1.5 with the
dimension hypothesis of Theorem 1.2, implies that K is an affine symmetric body of
revolution.

But first another definition. We say that a subgroup G ⇢ GLn.R/ is reducible if the
induced action on R

n leaves invariant a k –dimensional linear subspace for some
0 < k < n; otherwise, it is an irreducible subgroup of GLn.R/. (Beware of the
potentially confusing use of the notions “reducible” and “can be reduced” in the
statement of the following theorem.)

3In fact, this classical result is known to hold (in every codimension) even without the symmetry assumption
on B (see eg Theorem 2.12.4 of [15] or [22]). It is an open question whether a symmetric convex body
all of whose sections are affine symmetric bodies of revolution is itself an affine body of revolution (the
converse of Lemma 2.4). In Remark 2.9 we briefly discuss this question and explain why Theorem 1.4
may be considered as a first step towards an affirmative answer.
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Theorem 1.6 Let n ⌘ 1 mod 4 with n � 5, and suppose that the structure group

of Sn
can be reduced to a closed connected subgroup G ⇢ SOn . Then:

(a) If G is reducible then it is conjugate to a subgroup of the standard inclusion

SOn�1 ⇢ SOn , acting transitively on Sn�2
.

(b) If G is irreducible then G D SOn , or n D 133 and G ⇢ H ⇢ SO133 , where H is

the image of the adjoint representation of the simple exceptional Lie group E7 .

We prove Theorem 1.6 in Section 3.2 by applying to our situation some known results
from the literature about structure groups on spheres, mainly from Steenrod [23],
Leonard [13] and Čadek and Crabb [5]. Furthermore, for case (b) (the irreducible case),
we need to supplement these results with several facts about the representation theory
and topology of compact Lie groups.

In summary, Theorem 1.2 is a consequence of the above results, as follows. Since
all hyperplane sections of B are linearly equivalent to each other, they are linearly
equivalent to some fixed symmetric convex body K ⇢ R

n . By Lemma 1.5, the structure
group of Sn can be reduced to GK . It is easy to see that it can be further reduced
to the identity component G0

K
⇢ GK (Remark 3.1). For a convex body K, GK (and

thus G0

K
) is compact (Lemma 2.1) and therefore G0

K
is conjugate to a subgroup

of SOn (Lemma 2.2); hence, by passing to a convex body linearly equivalent to K,
we can assume that G0

K
⇢ SOn . Next, Theorem 1.6 applied to G D G0

K
implies that

K is a symmetric body of revolution: in case (a), Ren is an axis of revolution of K ;
in case (b), K is a euclidean ball. Thus all hyperplane sections of B are linearly
equivalent to the symmetric body of revolution K. It follows, by Theorem 1.3, that B

is an ellipsoid.

Remark 1.7 As for the remaining cases, ie n D 133 or n ⌘ 3 mod 4, we do not have
much to say. In order to push our methods for the n D 133 case it would suffice to
prove that S133 does not admit an E7 –structure. Perhaps a homotopy-theorist could
settle this. To attack the cases with n ⌘ 3 mod 4, completely different ideas should be
used, since the topology of the tangent bundle of Sn is too trivial (eg S3 and S7 are
parallelizable).

Acknowledgments We wish to thank Omar Antolín for very helpful conversations,
and to Ilia Smilga for kindly contributing Lemma 3.5. We thank the referee for a
thorough review and helpful suggestions and, in particular, for detecting a glitch in
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2 Affine bodies of revolution

The aim of this section is to prove Theorem 1.3, announced in the introduction. For
this purpose, we collect here the following lemmas.

2.1 Some preliminary lemmas

The first two lemmas are quite standard; we supply proofs for the convenience of the
reader.

Lemma 2.1 Let K ⇢ R
n

be a symmetric convex body. Then its linear symmetry

group GK D fg 2 GLn.R/ j g.K/D Kg is compact.

Proof Let AK WD fa 2 End.Rn/ j a.K/⇢ Kg. Since K is closed in R
n , AK is closed

in End.Rn/ ' R
n

2 (this follows easily from the continuity of matrix multiplication
End.Rn/ ⇥ R

n ! R
n ). Since K is bounded and 0 is an interior point, there exist

R; r >0 such that Br ⇢K ⇢BR , where B⇢ ⇢R
n is the closed ball of radius ⇢ centered

at the origin. It follows that for every a 2 AK , a.Br /⇢ BR , hence kak  R=r . Thus
AK ⇢ End.Rn/ is also bounded and hence compact. It remains to show that GK ⇢ AK

is closed. Let gi 2GK with gi !g 2End.Rn/. Since .gi/
�1 2AK , .gi/

�1.Br /⇢BR ,
hence 0 < .r=R/kvk  kgivk for all i and all v ¤ 0. Taking i ! 1 we get 0 <

.r=R/kvk  kgvk, hence g is invertible. Now, gi ! g implies .gi/
�1 ! g�1 and thus

g�1 2 AK , ie g�1.K/⇢ K, which is equivalent to K ⇢ g.K/. Therefore g 2 GK .

Lemma 2.2 Every compact subgroup G ⇢ GLn.R/ is conjugate to a subgroup of On .

Proof By taking an arbitrary positive inner product on R
n

�
eg the standard inner

product
P

xiyi

�
and averaging it over G with respect to a bi-invariant measure, one

obtains a G –invariant inner product h ; i on R
n . Now any two inner products on R

n are
linearly isomorphic to each other, hence one can find an element g 2 GLn.R/ such that
.u; v/ 7! hgu;gvi is the standard inner product on R

n . It follows that g�1Gg ⇢ On .
For more details see eg Proposition 3.1 on page 36 of [1].

There is also an alternative geometric proof of Lemma 2.2 via the notion of minimal
ellipsoids, as in [9, Lemma 1].
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Lemma 2.3 A symmetric affine body of revolution K ⇢ R
n

with n � 3, admitting

two different hyperplanes of revolution , is an ellipsoid.

Proof Let GK D fg 2 GLn.R/ j g.K/ D Kg and let G D G0

K
be the identity

component of GK . By Lemma 2.2, G is conjugate to a subgroup of SOn ; we may
assume, by passing to a body of revolution linearly equivalent to K, that G ⇢ SOn . We
will show that in this case K is a ball centered at the origin, by showing that G D SOn .

Now, each hyperplane of revolution of K gives rise to a subgroup of G conjugate
in SOn to SOn�1 (the stabilizer of the hyperplane). Thus, our hypotheses imply that
SOn�1 ¨ G ⇢ SOn . But it is well known that SOn�1 is a maximal connected subgroup
of SOn , ie G D SOn (see [19, Lemma 4, page 463]).

Lemma 2.4 Let K ⇢ R
n

with n � 3 be an affine symmetric body of revolution. Then

any section K0 D Ä \ K with a k –dimensional linear subspace Ä ⇢ R
n , for some

1< k < n, is an affine symmetric body of revolution in Ä . Furthermore , if L is an axis

of revolution of K and H the associated hyperplane of revolution , then:

(a) If Ä ⇢ H then K0
is an ellipsoid.

(b) If Ä ö H then H 0 WD Ä \ H is a hyperplane of revolution of K0
.

(c) If L ⇢Ä then L is also the axis of revolution of K0
associated to the hyperplane

of revolution Ä \ H.

Proof (a) If Ä ⇢ H then Ä \ K is a linear section of the ellipsoid H \ K, hence is
an ellipsoid.

(b) We can assume, by applying an appropriate linear transformation, that K is
a symmetric body of revolution with an axis of revolution L D Ren and plane of
revolution H D L? D fxn D 0g such that H \K is the unit ball in H and H ˙en are
support hyperplanes of K at ˙en . Furthermore, we can also arrange that H 0 WDÄ\H is
spanned by e1; : : : ; ek�1 and so Ä is spanned by e1; : : : ; ek�1; v , where vD�en�1Cen

for some �2 R. To show that H 0 is a hyperplane of revolution of K0 with an associated
axis of revolution L0 D Rv , we need to show that every nonempty section of K0 by
an affine hyperplane of the form H 0 C tv with t 2 R is a .k�1/–dimensional ball in
H 0 C tv , centered at tv . The latter section is the section of the .n�1/–dimensional ball
.H C ten/\ K, centered at ten , by H 0 C tv , a .k�1/–dimensional affine subspace of
H C ten , hence it is a .k�1/–dimensional ball, centered at tv , as needed.

(c) In the previous item, if L ⇢ Ä , we can choose v D en .
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Lemma 2.5 Let K ⇢ R
n

with n � 3 be an affine symmetric body of revolution with

an axis of revolution L. Suppose a section of K by a linear subspace Ä ⇢ R
n

of

dimension � 2 passing through L is an ellipsoid. Then K is an ellipsoid.

Proof Let e1; : : : ; en be the standard basis of R
n . By passing to a linearly equivalent

body of revolution, we can assume that K is a symmetric body of revolution with an axis
of revolution L D Ren and associated hyperplane of revolution H D L? D fxn D 0g.
Furthermore, we can also assume that H \ K is the unit ball in H and that H ˙ en

are support hyperplanes of K at ˙en . We will show that, under these assumptions,
K is the unit ball in R

n . To this end, it is enough to show that each section of K by a
2–dimensional subspace Å containing L is the unit disk in Å centered at the origin.
Let us choose a 2–dimensional subspace Å⇢ Ä containing L and a unit vector v in
the 1–dimensional space Å\H. Then Å\K is a (solid) ellipse, centered at the origin,
whose boundary passes through ˙v and ˙en , with support lines Rv˙ en at ˙en . It
follows that Å\ K is the unit disk in Å centered at the origin. Now, since L D Ren

is an axis of revolution of K, all rotations in R
n about L leave K invariant. Applying

all such rotations to Å, we obtain all 2–dimensional subspaces containing L, and each
of them intersects K in a unit disk centered at the origin, as needed.

Lemma 2.6 Let B ⇢R
nC1

be a symmetric convex body with n�4 and Ä1;Ä2 ⇢R
nC1

two distinct hyperplanes such that the hyperplane sections Ki WD Äi \ B for i D 1; 2

are affine symmetric bodies of revolution with axes and associated hyperplanes of

revolution Li and Hi (respectively). If L1 ⇢ H2 then K1 is an ellipsoid.

Proof Let E WD K1 \ K2 . We will show that E is an ellipsoid. This implies, by
Lemma 2.5, that K1 is an ellipsoid, since E D K1 \Ä2 and Ä2 contains L1 , an axis
of revolution of K1 .

To show that E is an ellipsoid, we note first that Ä2 does not contain H1 , else
L1;H1 ⇢ Ä2 would imply Ä1 D L1 ˚ H1 ⇢ Ä2 . Hence, by Lemma 2.4(b), Ä2 \ H1 is
a hyperplane of revolution of E D Ä2 \ K1 .

Next we look at Ä1 \Ä2 . This has codimension 1 in Ä2 . If it coincides with H2 , then
E D Ä1 \ K2 D H2 \ K2 , which is an ellipsoid, by Lemma 2.4(a). If Ä1 \Ä2 ¤ H2 ,
then, by Lemma 2.4(b), Ä1 \ H2 is a hyperplane of revolution of E D Ä1 \ K2 .

Now Ä1 \ H2 and Ä2 \ H1 are two distinct hyperplanes of revolution of E, since L1

is contained in the first but not in the second. It follows from Lemma 2.3 that E is an
ellipsoid.
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The statement of the following lemma has appeared elsewhere (eg statement III of the
proof of Theorem 2.2 of [18]), but we did not find a published proof of it (perhaps
because it is intuitively clear and a hassle to prove).

Lemma 2.7 Let B ⇢ R
nC1

be a symmetric convex body and xi ! x a convergent

sequence in Sn
. Assume each hyperplane section x?

i
\ B is an affine symmetric body

of revolution with an axis of revolution Li ⇢ x?
i

. If fLig is a convergent sequence

in RPn , Li ! L, then x? \ B is an affine symmetric body of revolution with an axis

of revolution L.

Proof Let Äi WD x?
i

, Ä WD x?, Ki WD Äi \ B and K WD Ä \ B. Assume, without loss
of generality, that x D enC1 , so that Ä D R

n .

Claim 1 Ki ! K in the Hausdorff metric.

We postpone for the moment the proof of this claim and the two subsequent ones.
Define ⇡ W R

nC1 ! R
n by .x1; : : : ;xnC1/ 7! .x1; : : : ;xn/. Note that ⇡.K/D K and

⇡.L/D L.

Claim 2 For large enough i , ⇡jÄi
W Äi ! R

n
is a linear isomorphism.

We henceforth restrict to a subsequence of fKig such that each ⇡jÄi
is an isomorphism.

Let K0
i

WD ⇡.Ki/ ⇢ R
n and L0

i
WD ⇡.Li/ ⇢ R

n . Then each K0
i

⇢ R
n is an affine

symmetric body of revolution with an axis of revolution L0
i
, L0

i
! L and K0

i
! K

(by Claim 1). By definition of affine symmetric body of revolution, there exist linear
isomorphisms Ti W R

n ! R
n such that K00

i
WD Ti.K

0
i
/ is an (honest) symmetric body of

revolution. By postcomposing Ti with appropriate elements of GLn.R/, we can also
assume that Ren D Ti.L

0
i
/ is an axis of revolution of K00

i
, that R

n�1 ˙ en are support
hyperplanes of K00

i
at ˙en and that K00

i
\ R

n�1 is the unit .n�1/–dimensional closed
ball in R

n�1 , centered at the origin.

Claim 3 fTig is contained in a compact subset of GLn.R/.

It follows that there is a subsequence of fTig, which we rename fTig, converging
to an element T 2 GLn.R/. Let K00 WD T .K/. Then lim K00

i
D lim Ti.K

0
i
/ D

.lim Ti/.lim K0
i
/D T .K/D K00, and T .L/D .lim Ti/.lim L0

i
/D lim Ti.Li/D Ren .

It is thus enough to show that Ren is an axis of revolution of K00. Now Ren is an axis
of revolution of each K00

i
, hence gK00

i
D K00

i
for all g 2 On�1 (the elements of On

leaving Ren fixed). Taking the limit i ! 1 we obtain g.K00/D K00. Hence Ren is
an axis of revolution of K00.
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Proof of Claim 1 We first show that d.y;Äi/! 0 for every y 2Ä . Let yi 2Äi be the
orthogonal projection of y onto Äi . Then y D yi C d.y;yi/xi , hence 0 D hyi ;xii D
hy�d.y;yi/xi ;xiiDhy;xii�d.y;yi/. It follows that d.y;Äi/d.y;yi/Dhy;xii!
hy;xi D 0.

Now assume Ki does not converge to K. There is then an ✏ > 0 and a subsequence of
the Ki , renamed Ki , such that dH .Ki ;K/� ✏ for all i , where dH is the Hausdorff
metric. By definition of dH , there is then for each i either

(a) ki 2 K such that d.ki ;Ki/� ✏ , or

(b) k 0
i

2 Ki such that d.k 0
i
;K/� ✏ .

At least one of these two cases must occur infinitely often.

If (a) occurs infinitely often, then, by compactness of K, there is a subsequence of
the ki , renamed ki , such that ki ! k 2 K and d.ki ; k/ <

1

2
✏ for all i . It follows that

B✏=2.k/⇢B✏.ki/ for all i , hence B✏=2.k/\Ki D? for all i . Clearly, k ¤0. Consider
the line segment Œ0; kç⇢ K. Then Œ0; k/⇢ int.B/ (this holds for every point k ¤ 0 of
a symmetric convex body B ). Let k 0 2 Œ0; k/\ B✏=2.k/. Then k 0 2 int.B/\ B✏=2.k/,
hence there exists ı > 0 such that Bı.k

0/⇢ B \B✏=2.k/. It follows that Bı.k
0/\Äi D

.Bı.k
0/\ B/\Äi D Bı.k

0/\ .B \Äi/D Bı.k
0/\ Ki ⇢ B✏=2.k/\ Ki D ? for all i .

This contradicts d.k 0;Äi/! 0 of the first paragraph above.

If case (b) occurs, we have a sequence k 0
i

2 Ki ⇢ B with d.k 0
i
;K/ � ✏ . From

compactness of B, and passing to a subsequence, we may assume that k 0
i
! b 2 B, with

d.b;K/� ✏ holding. Moreover, since 0 Dhk 0
i
;xii! hb;xi, we see that b 2Ä\B D K.

But this is a contradiction. G

Proof of Claim 2 Ker.⇡/D RenC1 , hence Ker.⇡jÄi
/¤ 0 if and only if enC1 ? xi .

But xi ! enC1 implies hxi ; enC1i ! 1, hence hxi ; enC1i ¤ 0 for all i sufficiently
large. G

Proof of Claim 3 For each pair of constants c;C >0, the set of elements A 2 GLn.R/

satisfying ckvk  kAvk  C kvk for all v 2 R
n is clearly closed. It is also bounded

because its elements satisfy kAk  C (using the operator norm on End.Rn/). It is
thus enough to find constants c;C > 0 such that ckvk  kTivk  C kvk for all v 2 R

n

and all i .

Denote by B⇢ the closed ball in R
n of radius ⇢ centered at the origin. Then there

are constants r 0;R0; r 00;R00 > 0 such that Br 0 ⇢ ⇡.B/⇢ BR0 and Br 00 ⇢ K00
i

⇢ BR00
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for all i . It follows that Ti.Br 0/⇢ Ti.K
0
i
/D K00

i
⇢ BR00 , thus kTivk  C kvk for all

v 2 R
n and all i , where C D R00=r 0.

Next, .Ti/
�1Br 00 ⇢ .Ti/

�1.K00
i
/ D K0

i
⇢ BR0 , hence k.Ti/

�1wk  c0kwk for all
w 2 R

n and all i , where c0 D R0=r 00. Substituting w D Tiv in the last inequality, we
obtain ckvk  kTivk for all v 2 R

n and all i , where c D 1=c0 D r 00=R0.

Lemma 2.8 Let B ⇢ R
nC1

be a symmetric convex body all of whose hyperplane

sections are nonellipsoidal affine symmetric bodies of revolution. For each x 2 Sn

let Lx be the (unique) axis of revolution of x? \ B. Then x 7! Lx is a continuous

function Sn ! RPn
.

Proof Let xi ! x be a converging sequence in Sn . To show that Lxi
! Lx , it is

enough to show that Lxi
is convergent and its limit is an axis of revolution of x? \ B.

Since RPn is a compact metric space, to show that Lxi
is convergent it is enough

to show that all its convergent subsequences have the same limit. To show this, it
is enough to show that the limit of a convergent subsequence of Lxi

is an axis of
revolution of x? \ B. This is the statement of Lemma 2.7.

2.2 The proof of Theorem 1.3

We first show Theorem 1.4, ie assume B ⇢ R
nC1 is a symmetric convex body all of

whose hyperplane sections are affine symmetric bodies of revolution, and show that
at least one of the hyperplane sections is an ellipsoid. If none of the sections is an
ellipsoid, then, by Lemma 2.3, for each x 2 Sn the section x? \ B has a unique
axis of revolution Lx ⇢ x? . By Lemma 2.8, x 7! Lx defines a continuous function
Sn ! RPn , ie a line subbundle of TSn . (Note that for even n this is already a
contradiction, so we proceed for odd n.) Now every line bundle on Sn with n � 2

is trivial, ie admits a nonvanishing section, hence one can find a continuous function
 W Sn ! Sn such that  .x/ 2 Lx for all x 2 Sn . Since  .x/ ? x , the function
F.t;x/ WD .t .x/C .1 � t/x/=kt .x/C .1 � t/xk for 0  t  1 is well defined (the
denominator does not vanish), defining a homotopy between  D F.1; � / and the
identity map F.0; � /. It follows that  is a degree 1 map and is thus surjective.

Now let Ä2 \ B be a hyperplane section of B, with hyperplane of revolution H2 ⇢ Ä2 .
Let L1 ⇢ H2 be any 1–dimensional subspace. Then the surjectivity of  implies
that B admits a hyperplane section K1 D Ä1 \ B with axis of revolution L1 . By
Lemma 2.6, K1 is an ellipsoid, in contradiction to our assumption that none of the
hyperplane sections of B is an ellipsoid. This completes the proof of Theorem 1.4.
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To complete the proof of Theorem 1.3, we use Theorem 1.4 to conclude that all
hyperplane sections of B are ellipsoids, and hence that B itself is an ellipsoid, as
needed.

Remark 2.9 Lemma 2.4 says that any hyperplane section of an affine symmetric
convex body of revolution B is again an affine symmetric convex body of revolution.
The converse of this result, as far as we know, is an open problem. Let us state a
somewhat more general question:

Let B ⇢ R
nC1

with n � 4 be a convex body containing the origin in its interior. If

every hyperplane section of B is an affine body of revolution , is B necessarily an affine

body of revolution?

An obvious necessary condition for B to be an affine body of revolution is that one of
its hyperplane sections is an ellipsoid (take the hyperplane of revolution of B ). Thus,
Theorem 1.4 can be viewed as a first step for a positive answer to the above question (at
least, under the further assumption of symmetry). Since Theorem 1.4 assumes n � 4,
we dare only ask the above question under the same dimension restriction.

The case n D 2 has a different flavor altogether, where “axis of revolution” of a plane
section is replaced by “axis of symmetry”. (For example, there are convex plane regions
with several different axes of symmetry which are not ellipses; this is the reason we
proved Theorem 1.4 only for n � 4.) Yet there is a result in this dimension, somewhat
related to Theorem 1.4. It is Theorem 2.1 of [18]: Let B ⇢ R

3
be a convex body such

that every plane section through some fixed interior point of B has an axis of symmetry.

Then at least one of the sections is a disk.

3 Structure groups of spheres

3.1 A reminder on structure groups of manifolds and their reduction

First, let us recall the following basic definitions (see, for example, Section 5 of
Chapter I of [12] or Part I of [23]).

Let G be a topological group, M a topological space and P ! M a principal G–
bundle. A reduction of the structure group of P ! M to a closed subgroup H ⇢ G is
a principal H –subbundle of P. Equivalently, it is a continuous section of the bundle
P=H ! M associated with the left G–action on G=H. The frame bundle of an n–
dimensional differentiable manifold M is the GLn.R/–principal bundle F.M /! M,
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whose fiber at a point x 2 M is the set of all linear isomorphisms R
n ! TxM, with

the right GLn.R/–action given by precomposition of linear maps. A G –reduction of
the structure group of a smooth n–manifold M (or a G –structure) is the reduction of
the structure group GLn.R/ of its frame bundle to a closed subgroup G ⇢ GLn.R/.
Equivalently, it is given by an open cover of M, together with a trivialization of
the restriction of TM to each of the covering open subsets, such that the transition
functions between the trivializations on overlapping members of the cover take values
in G [12, Proposition 5.3, page 53].

Remark 3.1 For M DSn , there is a standard cover by two “hemispheres”, intersecting
along a neighborhood of the “equator” Sn�1 , hence its structure group is given by
a single transition function �n W Sn�1 ! GLn.R/, called the characteristic map [23,
Section 18, pages 96–100]. The structure group of Sn can be reduced to G if and only
if the characteristic map �n is homotopic to a map whose image is contained in G. In
particular, for n � 2, since Sn�1 is connected, if the structure group of Sn can be
reduced to some closed subgroup G ⇢ GLn.R/ then it can be further reduced to its
identity component G0 ⇢ G.

Let us recall Lemma 1.5, announced in the introduction. It follows from Lemma 2
of [9], but since it is such a key result in this article, we offer here an alternative proof,
somewhat more elementary and detailed.

Lemma 1.5 Let B ⇢ R
nC1

be a symmetric convex body all of whose hyperplane

sections are linearly equivalent to some fixed symmetric convex body K ⇢ R
n

. Let

GK WD fg 2 GLn.R/ j g.K/D Kg be the group of linear symmetries of K. Then the

structure group of Sn
can be reduced to GK .

Proof Identify for each x 2 Sn , by parallel translation in R
nC1 , the tangent space

to Sn at x with x? ⇢ R
nC1 and define the set Px ⇢ Fx.S

n/ of frames at x as the
set of linear isomorphisms R

n ! x? mapping K to x? \B. Note that if � 2 Px then
Px D � GK , that is, � W x 7! Px is a section of F=GK ! Sn . In order to show that
P D S

Px ⇢ F is a GK –reduction it is thus enough to show that

(1) GK is a closed subgroup of GLn.R/, and

(2) � W Sn ! F=GK is continuous

(see eg [10, Theorem 2.3, page 74] or [23, Corollary 9.5, page 43]). By Lemma 2.1
above, GK is a compact group, hence it is closed in GLn.R/.
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To prove the continuity of � , it is enough to show that for every convergent se-
quence xi ! x in Sn there exists a subsequence of f�.xi/g converging to �.x/. Let
⇡ W F.Sn/! F.Sn/=GK be the natural projection and choose arbitrary lifts �i 2 Pxi

of �.xi/. By the continuity of ⇡ , it is enough to find a subsequence of f�ig converging
to an element � 2 Px .

Now each �i is a linear isomorphism R
n ! x?

i
⇢ R

nC1 , thus we may think of
�i 2 Hom.Rn;RnC1/. Since �i.K/⇢ B, with int.K/¤? and B compact, and hence
bounded, f�ig is a bounded set in Hom.Rn;RnC1/ (K contains some basis ˇ of R

n

and �i.ˇ/⇢ B ). Therefore, f�ig has a convergent subsequence which we denote by
�i as well, �i ! � , for some � 2 Hom.Rn;RnC1/. It remains to show that � 2 Px ,
ie � is a linear isomorphism R

n ! x? such that �.K/D x? \ B.

Let Ki D x?
i

\B, K1 D x? \B. In the proof of Lemma 2.7 (Claim 1) we showed that
xi ! x implies Ki ! K1 (in the Hausdorff metric). Thus, �.K/D .lim�i/.K/D
lim.�i.K//D lim Ki D K1 . Since K1 has nonempty interior in x? , �.K/D K1
implies that � is a linear isomorphism R

n ! x? . Thus � 2 Px , as needed.

3.2 Proof of Theorem 1.6(a) (the reducible case)

Suppose the structure group of Sn can be reduced to a closed connected subgroup
G ⇢ SOn , acting reducibly on R

n . Then G is conjugate to a closed connected subgroup
G0 ⇢ SOk ⇥ SO0

n�k
⇢ SOn for some k with 1

2
n  k < n, where SO0

n�k
denotes the

subgroup of SOn fixing R
k D fxkC1 D � � � D xn D 0g ⇢ R

n . If n ⌘ 1 mod 4, then such
a reduction is possible only if k D n � 1, ie G0 ⇢ SOn�1 , acting irreducibly on R

n�1

(see [23, Sections 27.14 and 27.18, pages 143–144]). In particular, the structure group
of Sn reduces to SOn�1 but not to SOn�2 . We shall next prove that G0 acts transitively
on Sn�2 (see Corollary 3.2 of [13]).

Consider the standard fibration SOn�2 ! SOn�1
⇡�! Sn�2 . If G0 does not act

transitively on Sn�2 , it means that the composition G0 i,�! SOn�1
⇡�! Sn�2 is not

surjective, and is therefore null-homotopic. Let F W G0 ⇥ I ! Sn�2 be the homotopy.
Then, by the homotopy lifting property, there exists a map zF completing the diagram

G0

I⇥0

✏✏

i
// SOn�1

⇡
✏✏

G0 ⇥ I

zF

::

F

// Sn�2
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Commutativity of the diagram implies that zF .x; 1/2 SOn�2 ⇢ SOn�1 for every x 2 G0.
Let f W G0 !SOn�2 be defined by f .x/D zF .x; 1/; then, up to homotopy, the following
diagram commutes:

G0

f ""

i
// SOn�1

SOn�2

j

::

But now precomposing j ı f with the characteristic map �n W Sn�1 ! G0 yields a
reduction of the structure group of Sn to SOn�2 ,

Sn�1
�n
// G0

f ""

i
// SOn�1

SOn�2

j

::

which is a contradiction.

3.3 Proof of Theorem 1.6(b) (the irreducible case)

We start with the following three preliminary lemmas.

Lemma 3.2 For all n ⌘ 1 mod 4 with n � 5, if the structure group of Sn
can be

reduced to G ⇢ SOn , then dim G � n � 2.

Proof This follows readily from Proposition 3.1 of [5], since — as mentioned above —
the structure group of Sn for n ⌘ 1 mod 4 may be reduced to SOn�1 but not to SOn�2 .
Given that the argument is a simple one, we include it here.

Assume that dim G D k < n. We are going to show that the structure group of Sn

reduces to the standard SOkC1 ⇢ SOn . This implies the result.

Consider the characteristic map �n W Sn�1 ! SOn of Sn . Assuming that the structure
group of Sn reduces to G amounts to assuming the existence of f W Sn�1 ! G such
that the following diagram commutes up to homotopy:

Sn�1

f
!!

�n
// SOn

G

i

==

The standard inclusion SOkC1 ,! SOn induces isomorphisms ⇡j .SOkC1/' ⇡j .SOn/

for every j < k (this follows immediately from the long exact sequences of the
fibrations SOkC1Cr ! SOkC2Cr ! SkC1Cr for the range of j ’s in question).
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Now, this implies that G ,! SOn factors (up to homotopy) through SOkC1 . One
way of seeing this is via obstruction theory. Think of G as a CW–complex. Then the
obstruction to extend the inclusion G ,! SOkC1 from the j –skeleton to the .j C1/–
skeleton is a cocycle with coefficients in ⇡j .SOkC1/. But the inclusion SOkC1 ,! SOn

induces isomorphisms onto ⇡j .SOn/ for j < k , where we know that the obstruction
vanishes. Therefore, there is no obstruction to construct G ! SOkC1 such that
G ! SOkC1 ,! SOn is homotopic to the inclusion G ,! SOn . Hence, the structure
group of Sn reduces to SOkC1 .

Lemma 3.3 If n�8, then the structure group of Sn
cannot be reduced to an irreducible

subgroup G ¨ SOn isomorphic to SOk , SUm or Spm , with k � 4 and m � 2.

Proof This is Corollary 2.2 of [5].

Lemma 3.4 For all n � 2, if the structure group of Sn
reduces to a closed connected

irreducible maximal subgroup H ¨ SOn , then H is simple.

Proof See Theorem 3 of [13].

We now proceed to the proof of Theorem 1.6(b), using the above three lemmas. We
first treat n � 9, then n D 5.

The case n � 9 Assume that G ⇢ SOn acts irreducibly on R
n but is not all of SOn .

Then it is contained in some maximal connected closed subgroup H, G ⇢ H ¨ SOn .
The structure group of Sn then reduces to H, acting also irreducibly on R

n . By
Lemma 3.4, H is simple. By Lemma 3.3, H is a nonclassical group, ie it is isomorphic
to either Spinm with m � 7, or one of the five exceptional simple Lie groups, G2 ,
F4 , E6 , E7 or E8 . By Lemma 3.2, n  dim H C 2. Let V be the complexification
of the (irreducible) representation of H on R

n . Since dim V is odd, V is a complex
irreducible representation.

Let us list all the properties of the pair .H;V / that we have so far:

(i) H is a nonclassical compact connected group, ie Spinm with m � 7, or one of
the five exceptional compact simple Lie groups.

(ii) V is a complex irreducible representation of H of real type (ie the complexifi-
cation of a real irreducible representation).

(iii) dim V ⌘ 1 mod 4.

(iv) dim V  dim.H /C 2.

(v) If H D Spinm , then its action on V does not factor through SOm .
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We claim that these five conditions on the pair .H;V / are incompatible for dim V � 9,
except if V is the complexified adjoint representation of H D E7 , in which case
dim V D dim H D 133 ⌘ 1 mod 4. We are unable to exclude this case.

For the exceptional groups, one can simply check (eg in Wikipedia) that none of them,
other than E7 , has a nontrivial irreducible representation satisfying conditions (iii)
and (iv). In the following table we list the smallest irreducible representations for them;
we have marked in boldface the first dimensions that are ⌘ 1 mod 4:

group G2 F4 E6 E7 E8

dim H 14 52 78 133 248

Irreps 7 26 27 56 248
14 52 78 133 3875
27 273 351 912

:::

64
::: 2925

::: 1 763 125
77

:::
:::

:::
:::

For the spin groups, the next lemma shows that conditions (iii) and (v) are incompatible.
(We thank Ilia Smilga for kindly informing us about this lemma and its proof.)

Lemma 3.5 Every irreducible complex representation of Spinm with m � 3 which

does not factor through SOm is even-dimensional.

Proof We first review some well-known general facts concerning representations of
simple compact Lie groups (see for example [1]). To each d –dimensional complex
representation of a compact semisimple Lie group G of rank r with a maximal
torus T one can associate its weight system �⇢ t⇤ , a subset with d points (counting
multiplicity). The Weyl group W D NG.T /=T acts on t⇤ , preserving �. Thus, to
show that d is even, it is enough to show the following:

(a) An irreducible nonclassical representation V of Spinm does not have a 0 weight.

(b) The Weyl group of Spinm contains a subgroup whose order is a positive power
of 2, and whose only fixed point in t⇤ is 0.

Note that (a) and (b) imply that d is even, since under the action of said subgroup of W ,
say W 0, � breaks into the disjoint union of W 0 –orbits, each with an even number
of elements, since, by (a), all stabilizers are strict subgroups of W 0, hence have even
index.
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To show (a), note that the T –action on the 0 weight space is trivial. Now �1 2 Spinm

is in T (since it is central), but �1 must act on V by �Id, else the Spinm –action
on V would factor through SOm D Spinm=f˙1g.

To show (b), let us first take m D 2k . Then R
m decomposes under T as the direct

sum of k 2–planes. Consider the subgroup N 0 ⇢ SOm which leaves invariant each
of these 2–planes. Then N 0 ' S.O2 ⇥ � � � ⇥ O2/, T ⇢ N 0 ⇢ N.T /, and its image
W 0 D N 0=T ⇢ W D N.T /=T acts on t⇤ by diagonal matrices with entries ˙1 on
the diagonal, with an even number of �1’s. Using this description, it is easy to show
that W 0 has order 2k�1 and that its only fixed point in t⇤ is 0:

For m D 2k C 1 the argument is simpler. Under T , R
m decomposes as a direct sum

of k 2–planes, plus a line. We take an element in SOm which is a reflection about a
line through the origin in each of these planes, and .�1/k in the line. This is in N.T /

and acts on t⇤ by �Id, hence its image in W has order 2 and its only fixed point in t⇤

is the origin.

The case n D 5 The only reduction of the structure group of S5 that cannot be ruled
out by Lemmas 3.2, 3.3 or 3.4 is the 5–dimensional irreducible representation of SO3 .
This case is eliminated by the next lemma.

Lemma 3.6 Let ⇢ W SO3 ! SO5 be the irreducible 5–dimensional representation

of SO3 . Then, for any f W S4 ! SO3 , the composition S4 f�! SO3

⇢�! SO5 is

null-homotopic. It follows that the structure group of S5
cannot be reduced to ⇢ .

Proof Since the tangent bundle of S5 is not trivial, the characteristic map �5 W S4 !
SO5 is not null-homotopic. Consequently, to show that the structure group of S5

cannot be reduced to ⇢ it is enough to show that any composition S4 f�! SO3

⇢�! SO5

is null-homotopic. To show this, we use the following three claims:

(a) ⇡3.S
3/'⇡3.SO3/'⇡3.SO5/' Z and ⇡4.S

3/'⇡4.SO3/'⇡4.SO5/' Z2 .

(b) The map ⇢⇤ W ⇡3.SO3/ ! ⇡3.SO5/ has a cyclic cokernel of even order (the
“Dynkin index” of ⇢).

(c) For any topological group G and integers k; n � 2, the composition of maps
Sn !Sk !G defines a biadditive map ⇡k.G/⇥⇡n.S

k/!⇡n.G/, .Œf ç; Œgç/ 7!
Œf ç ı Œgç WD Œf ı gç (the “composition product”).

Claim (a) is standard (see eg [11, Volume 2, Appendix A, Table 6.VII, page 1745]).
Claim (b) is a straightforward Lie algebraic calculation, see next subsection. For
claim (c), see [24, Theorem (8.3), page 479].
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Now let f W S4 ! SO3 be any (pointed) continuous map and zf W S4 ! S3 its lift to the
universal double cover ⇡ W S3 ! SO3 . By (b), the composition z⇢ WD ⇢ ı⇡ W S3 ! SO5

as in
S3

⇡

✏✏

z⇢

""

S4

zf
==

f
// SO3 ⇢

// SO5

has an even Dynkin index (in fact, it is the same as the index of ⇢ , since ⇡ , being
a cover, has index 1). In particular, Œz⇢ç D 2Œuç 2 ⇡3.SO5/ for some u W S3 ! SO5 .
By (c), with n D 4, k D 3 and G D SO5 , Œ⇢ ıf çD Œz⇢ ı zf çD Œz⇢çı Œ zf çD .2Œuç/ı Œ zf çD
2.Œuç ı Œ zf ç/D 0 2 ⇡4.SO5/' Z2 .

A byproduct of the proof of Theorem 1.6 is the following corollary, which could be of
some interest to topologists:

Corollary 3.7 Suppose that the structure group of Sn
can be reduced to a closed

connected subgroup G ¨ SOn . If n D 4k C 1 � 5, but n ¤ 9; 17 or 133, then G is

conjugate to the standard inclusion of SO4k , U2k or SU2k in SO4kC1 . For n D 9,
G is conjugate to the standard inclusion of SO8 , U4 , SU4 or Spin7 ⇢ SO8 in SO9 .

Proof By Theorem 1.6(b), such a G is conjugate to a subgroup of the standard
inclusion SO4k ⇢ SO4kC1 , acting transitively on S4k�1 . The only closed connected
subgroups G ⇢ SO4k acting transitively on S4k�1 , in the said dimensions, are the
standard linear actions of SO4k , U2k , SU2k , SpkSp1 , SpkU1 and Spk on R

4k D
C

2k D H
k , or the spin representation of Spin7 on C

4 (see eg [4, Examples 7.13,
page 179]). But the groups SpkSp1 , SpkU1 and Spk for k � 1 cannot occur as
structure groups of S4kC1 , since they contain the last one, Spk , which is excluded by
Theorem 2.1 of [5].

Remark 3.8 For n D 17, the group Spin9 ⇢ SO16 acts transitively on S15 , but we
do not know if the structure group of S17 could be reduced to it. For n D 133, as
explained before, we do not know if the group E7 ⇢ SO133 (or some subgroup of it
acting irreducibly on R

133 ) may appear as a reduction of the structure group of S133 .

3.4 The Dynkin index

Here we prove claim (b) from the proof of Lemma 3.6 of the previous subsection. We
begin with some background.
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Let ⇢ W H ! G be a homomorphism of compact simple Lie groups. The third homotopy
group of any simple Lie group is infinite cyclic (isomorphic to Z), hence the induced
map ⇢⇤ W ⇡3.H / ! ⇡3.G/ has a cyclic cokernel of order j 2 N , called the Dynkin
index of ⇢ (if ⇢⇤ D 0 then j D 0, by definition). Clearly, j is multiplicative, ie
if zH is a simple compact Lie group and ⇡ W zH ! H is a homomorphism, then
j .⇢ ı⇡/D j .⇢/j .⇡/.

There is a simple Lie algebraic expression for j .⇢/. To state it, the Killing form on
any simple compact Lie algebra needs to be normalized first by hı; ıi D 2, where ı
is the longest root. Next, the pullback by ⇢ W H ! G of the Killing form of G is an
AdH –invariant quadratic form on the Lie algebra of H, hence, by simplicity of H, is a
nonnegative multiple of the Killing form of H. This multiple turns out to be precisely
the Dynkin index of ⇢ .

Theorem 3.9 Let ⇢ W H ! G be a homomorphism of compact simple Lie groups and

⇢⇤ W h ! g the induced Lie algebra homomorphism. Then

(1) h⇢⇤X; ⇢⇤Y ig D j .⇢/hX;Y ih
for all X;Y 2 h.

In fact, Dynkin defined j .⇢/ via formula (1) (see [8, formula (2.2), page 130]), and
showed in the same article that j .⇢/ is an integer, without reference to its topological
interpretation. Later, it was shown to have an equivalent definition via homotopy groups,
as given above (we are not sure who proved it first; we learned it from [20, Section 2
of Chapter 5, page 257]).

Lemma 3.10 j .⇢/D 10 for the irreducible representation ⇢ W SO3 ! SO5 .

Proof Theorem 3.9 gives an easy-to-follow recipe for j. To apply it, one needs to
compute first the normalization of the Killing forms of SO3 and SO5 .

Let so5 be the set of 5 ⇥ 5 antisymmetric real matrices, the Lie algebra of SO5 ,
with t ⇢ so5 the set of block diagonal matrices of the form .x1J ˚ x2J ˚ 0/, where
J D

�
0 �1

1 0

�
. The roots are ˙x1˙x2 , ˙x1 and ˙x2 , with ı WDx1Cx2 . Since tr.XY /

is clearly an Ad–invariant nontrivial bilinear form on so5 , the normalized Killing form
of so5 is of the form hX;Y i D � tr.X Y / for some �2 R. The normalization condition
is hı[; ı[i D 2, where ı[ 2 t is defined via ı.X / D hı[;X i for all X 2 t. Let ı[ D
�0.J ˚J ˚0/ for some �0 2 R. Then, for all X 2 t, hı[;X i D �tr.ı[X /D �2��0ı.X /,
thus �2��0 D 1, so ı[ D �.1=2�/.J ˚ J ˚ 0/ and 2 D hı[; ı[i D �trŒ.ı[/2çD �1=�,
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hence �D �1

2
. It follows that hX;Y iso5

D �1

2
tr.XY /. For so3 we get, by a similar

argument, hX;Y iso3
D �1

4
tr.X Y /.

Now let ⇢ W SO3 ! SO5 be the 5–dimensional irreducible representation on R
5 (con-

jugation of traceless symmetric 3 ⇥ 3 matrices). Let X D .J ˚ 0/ 2 so3 . To calculate
trŒ.⇢⇤X /2ç, we let X act on S2..C3/⇤/ (complexifying, passing to the dual and
adding an extra trivial summand does not affect trace). Now x1 ˙ ix2 and x3 are
X–eigenvectors in .C3/⇤ , with eigenvalues ˙i and 0, hence the eigenvalues of the
⇢⇤X –action on S2..C3/⇤/ are ˙2i , ˙i , 0 and 0, and those of .⇢⇤X /2 are �4, �4,
�1, �1, 0 and 0, giving trŒ.⇢⇤X /2çD�10. Thus j .⇢/Dh⇢⇤X; ⇢⇤X iso5

=hX;X iso3
D

2 trŒ.⇢⇤X /2ç=tr.X 2/D 10, as claimed.
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